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Abstract-A systematic way of obtaining thl~ effective viscoelastic moduli in time and frequency
domain is presented for viscoelastic composites with periodic microstructures, The problem of
estimating the effective moduli is formulated using the asymptotic homogenization method, For
theoretical aspects, the memory effects due to the homogenization are shown in general form and a
sufficient condition for the effects to disappear is fully discussed, The computational procedure is
divided into two steps. The effective relaxation moduli are computed in Laplace transformed domain
and are numerically inverse-transformed into time domain, The effective complex moduli are then
readily obtained by using simple formulae of the Fourier transform. Several numerical examples
are presented to illustrate and verify present approach and to discuss the memory effects. (g 1998
Elsevier Science Ltd.

I. INTRODUCTION

Needs for estimating the effective moduli of composites have naturally arisen with their
increasing engineering applications, Among many other methods of obtaining the effective
moduli, the asymptotic homogenization method, which will be simply referred to homo­
genization method, has several attractive features mainly due to its systematic mathematical
approach (Sanchez-Palencia, 1980; Bensoussan et al. 1978), Most importantly, the homo­
genization method guarantees convergence, i,e, the solution of the problem with a periodic
microstructure converges to the solution of the homogenized problem as the period of the
microstructure goes to zero. This implies that the accuracy of the homogenized solution is
not significantly affected by the specific boundary conditions imposed on the global system,
In fact, it has been shown that the homogenization method gives better estimates of the
effective elastic moduli than standard mechanics approaches (Hollister and Kikuchi, 1992),
Also, the homogenization method has nice features in a practical point of view, For the
elastic case, the equations for the estimation of the effective elastic moduli have nearly the
same form as those of elasticity problem, Thus the well-known numerical tools such as
FEM can be easily implemented with slight modifications (Guedes and Kikuchi, 1990),
This implies that the geometric configuration of microstructures do not matter. Also, the
local fluctuations of field variables such as displacements can be easily computed from the
homogenized solution and the estimation of the local errors due to homogenization is
rather straightforward (Fish et aI" 1994),

Despite the attractive features of the homogenization method, there have been only a
few works on the applications to viscoelasticity on the contrary to the elastic cases, The
effective complex moduli at fixed frequencies are computed based on the homogenization
method using the correspondence principle (Nguyen et ai" 1995), In that case, the homo­
genization process is identical to the one used in the elastic case, The discussions on the
estimation of the effective relaxation moduli or the effective creep compliances of general
viscoelastic composites in time domain are rarely found although works on the simple
Voigt and Maxwell models of viscoelasticity are available (Sanchez-Palencia, 1980; Suquet,
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1987). They showed that the memory effects appeared due to the homogenization. Although
the Voigt and the Maxwell models have only instantaneous memories, long-term memories
were induced during the homogenization process. From the mathematical studies of differ­
ential equations with one space and time dimension, it has been found that the memory
effects appear due to the interaction between the spatial and the temporal variations of the
coefficients of the differential equations (Tartar, 1990).

In the present work, the homogenization process is formulated for general viscoelastic
composites and a systematic way ofobtaining the effective relaxation moduli in time domain
is presented. Also, the memory effects are shown in general form and are discussed in detail.
It is shown with several numerical examples that the appearance of the memory effects
makes the computations very complicated. It is also shown that the memory effects may be
used in a positive manner to obtain the required damping characteristics of viscoelastic
composites.

2. HOMOGENIZATION IN VISCOELASTICITY

2.1. Introduction
The homogenization method has been developed from the studies of partial differential

equations with rapidly oscillating coefficients. The method has been applied to the esti­
mation of the effective moduli of composites with periodic microstructures (Sanchez­
Palencia, 1980). A heterogeneous medium with a periodic structure may be replaced by an
effective homogeneous one, provided that the period is very small compared to the global
length scale. In the homogenization method, the field variables are assumed to vary in
multiple scales, i.e. in local and global scales, and thus they are represented by asymptotic
expansions in each spatial scale. Due to the periodicity of the microstructure, field variables
such as displacement, strain and stress are assumed to be periodic with respect to the local
scale. The effective moduli are then obtained by investigating the asymptotic behavior of
the medium as the period of the microstructure approaches to zero.

2.2. Basic concepts/or homogenization
Before the formulation, several basic concepts and notations need to be defined. In

order to deal with two different length scales associated with microscopic and macroscopic
behaviors, global coordinate is designated by x and local coordinate by y. The global
coordinate and the local coordinate are related with each other by a positive real parameter
c; as follows:

(I)

Y-periodicity of a functionf(y) in the local coordinate is defined as follows:

where Y!, Y2 and Y1 represent the period of the Y-periodicity, i.e.

Y = (0, Y1) X (0, Y2 ) x (0, Y3 ).

(2)

(3)

From a Y-periodic function[(y) in the local coordinate, an I> Y-periodic function ,l'(x) in
the global coordinate can be defined as follows:

I(x) = fix!l» = fey)· (4)

Derivatives in the global scale and those in the local scale can be related using eqn (I).
Suppose that a function g'(x) = g(x, y) depends on both the global and the local coor­
dinates. Then the following relations hold:
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Fig. 1. A problem with periodic microstructure.

og'(X) og(X, y) I ug(X, y)
-- = + -----; y = X/I:.

ox; AX, I: oy;
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(5)

For the averaging process of the homogenization, the fol1owing mean operator, -, on Y is
defined.

(6)

where IYI is the measure of Y.

2.3. Problem statements
The fol1owing problem of viscoelasticity with a periodic microstructure as shown in

Fig. I is considered, where the inertia effects and the body forces are not present.

aJ,(x, t)ni = l~(x, t) on 02f!

iM(x, t)
u;(x,t) = 0 and--- = 0 at t = 0ut

If , oek/(u"(X, T»
= G,jkl(X, t-T)---~---- dT

o CT

(7)

(8)

(9)

(10)

(II)
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(12)

where 0 is an open connected domain of R3
, GIO the displacement-prescribed boundary,

G20 the traction-prescribed boundary, and Fi the traction force on G20. The relaxation
tensor G~jkl(X, t) is given by

(13)

where G,jkl(Y' t) is Y-periodic in the local coordinate Y and satisfy the symmetry and the
positivity conditions:

G,jk/(Y' t) = Gjikl(y, t) = Gijlk(Y, t) = Gk1f/y, t), VYE Y (14)

3!X > 0 such that Gijk/(y, t)ei,ekl > !Xeueu, V symmetric eij and Vy E Y. (15)

Since G;jkl(X, t) is dependent on e, u~(x, t) is also dependent on e. The asymptotic behavior
is to be observed as c approaches to zero.

2.4. Asymptotic expansions
The most important and essential postulate in the homogenization method is that

u~(x, t) has an asymptotic expansion in the following form.

u;(X,t) = u?(x,t)+cui(x,y,t)+e 2 u;(x,y,t)+, ... ,; Y = xlc (16)

where u?,(x, Y, t) is Y-periodic in Y and independent of e. From eqns (5) and (16), the
asymptotic expansions for e~j and (J~, are obtained as follows:

e~/x, t) = el/uF.(x, t)) = e~(x, Y, t) +ceij(x, y, t) +, ... ,; y = x/c (17)

where

= (Jt(x,y,t)+e(Ji~(x,y,t)+, ... ,; Y = x/c

° r oe2tCx, y, r)
(Jij(x,y, t) =, Jo Gojkl(y, t-r)-~-G-r-dr.

(18)

(19a)

(19b)

In eqn (19) the subscripts x and y mean the differentiation with respect to Xi and y"
respectively, i.e.

(20)

2.5. Local problem, global problem and homogenized moduli
By introducing eqns (5) and (18) into eqn (7), and arranging it against c- l and co, we

obtain the following two equations.
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oO"~(x, y, t) = 0

oy/

oO",j(x, Y, t) oO"~(x, Y, t)
~'----"-- +---- = o.

oY) ax)

Noting that O"ij(X, Y, t) is Y-periodic in y, we obtain

I f 00"!/ I f 1TYI y oy) dy = TYf c1Y O"Uni dS = 0 as e --+ o.

Thus, by applying the mean operator, eqn (22) becomes

aa~(x, t)
-·---=0.

ox)
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(21)

(22)

(23)

(24)

Equations (21) and (24) represent the local and the global problems, respectively. By solving
the local problem (21), homogenized viscoelastic moduli can be obtained. From eqn (19),
we obtain

(25)

Plugging eqn (25) into eqn (21) and applying Laplace transform, the local problem becomes

a ~ ~I ~O O(sGiik/(y,S»
- ;;-[sGiik/(y,s)eklv(u (x,y,s))] = ek/xCu (x,s»)--~---
u~· . ~~

(26)

where variables with A show that they are Laplace transformed. For the variational formu­
lation of eqn (26), we introduce Hilbert spaces with the association inner products as
follows:

H y = {u IUiEL~c(R3), Y-periodic}

V y = {UIUiEHI~c(R3), Y-periodic}

(u, V)H y == t UiVi dy

3 (GU Ov)
(u,v)v,.=(u,v)H,.+L ~'a .

i~1 (Yi Yi H y

(27a)

(27b)

(28a)

(28b)

Using periodicity condition, following variational formulation of the local problem is
obtained in Laplace transformed domain.

Find u l (x, y, s) with values in V y such that Vv E V y ,

f ~ ~ I ~O f ~
y SGijk/(y, s)eklv(u (x, y, s»euAv) dy = -ek/xCu (x, y, s» y sGiikl(y, s)eUY(v) dy. (29)

In eqn (29), supposing that UO is given, ul can be obtained in terms of uo. However, the
problem (29) does not have a unique solution, but only can determine the solution up to
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an additive constant which depends only on x (Sanchez-Palencia, 1980). To treat this
problem, we define a space with an associated inner product as follows:

Let us also define wdY, s) by

(Wk/(Y, .I), V) 1\ = f SGijk/(Y, s)ei/y(v) dy, Vv E Vy.
y

Then eqn (29) becomes

Therefore, iii is given in terms ofiio and Wk/ as follows:

(30)

(31 )

(32)

(33)

(34)

By applying inverse Laplace transform to eqn (34), and plugging it into eqn (25), we obtain

where W mn is the inverse Laplace transform of wmll' By using the Leibnitz rule and by
changing the order of the integrations, we obtain

By applying the mean operator, the following homogenized stress-strain relations are
obtained from eqn (36),

(37)

where homogenized viscoelastic relaxation modulus, G;/k/(t), is given by the following
equation.

(38)

It can be easily shown that G;jk/(t) satisfies the symmetry and the positivity conditions.
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Consequently, the homogenized problem with the homogenized viscoelastic moduli can be
stated as follows:

oUY(X,t)uY(x, t) = 0 and -~----- = 0 at t = 0ct

o I ('auf (x, t) au?(x, t»)ekl(U (x, t)) = - ----.-- + -~--- .
2, ax, eXt

(39)

(40)

(41)

(42)

(43)

(44)

Note that the homogenized equations [eqns (39)-(44)] are in exactly the same form as the
original ones with microstructure [eqns (7)-(12)] if the original modulus, G:,kl(X, t), is
replaced by the corresponding homogenized modulus, G7,k,(t). Thus complicated problems
with microstructures can be replaced by corresponding simple problems without micro­
structures. However, the homogenized modulus, G~/kl(t), which is in a sense the averaged
modulus of the material with the microstructure, needs to be calculated beforehand.

2.6. Computation of the homogenized relaxation moduli
By t'lking Laplace transform of eqn (38), we obtain

(45)

where Wkl(Y, .1') is the solution of the following local problem in Laplace transformed domain.

J
" sGij",,,(y,s)e,,,n,(wkl(y,s»ei/,(v)dv= f sGi/k,(y,s)elj,.(v)dy, VVEV). (46)

y }

Thus, the homogenized modulus, G;/kl(t) , can be obtained as follows. First, Wkl(y, .1') is
computed in Laplace transformed domain from eqn (46). Note that eqn (46), from which
Wk/(Y, s) is computed. has nearly the same form as the typical elastostatic problems. The
domain of the local problem is the unit cell, Y. The right-hand side of eqn (46) acts like
body forces and the boundary conditions are given as the periodic boundary conditions on
Wkl(Y, .1'). This means that Wkl(Y, .1') can be easily computed by the already existing FEM
codes with slight modifications. After wkly, .1') is computed, the homogenized modulus in
Laplace transformed domain, G;/kl(S), can be readily obtained from eqn (45). Then G;',k/(t)
is obtained from G;',k'(S) by inverse Laplace transform. Detailed procedure for numerical
inverse Laplace transform is to be explained in the next section. It should be mentioned
that the homogenization in Laplace transformed domain, egns (45) and (46), could also be
obtained by using the correspondence principle and the homogenization formulation in
elasticity (Sanchez-Palencia, 1980). Thus the correspondence principle implies that the
homogenizations both in time domain and in Laplace transformed domain are equivalent.
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~
--~.:;..!...'--)~

.L-1

.L : Laplace transform

.Lor: Inverse Laplace transform

W, : Homogenization in time domain

';iI. : Homogenization in Laplace transformed domain
Fig. 2. Schematic diagram of relations between moduli in transformed domains.

This is schematically shown in Fig_ 2. Note that the homogenization operators .Yet and .YeL

are not linear operators.

3. MEMORY EFFECTS AND INVERSE LAPLACE TRANSFORM

3.1. Introduction
Viscoelastic materials have memories in the sense that the current behaviors are

dependent on the past histories of stresses and strains. In addition to the original memories
of the constituent materials of viscoelastic composites, the homogenization process induces
additional long-term memories. This behavior is termed as the memory effects. It has been
shown that the long-term memory appears as a result of homogenization for composites in
which the viscoelastic phase is treated with a Voigt model which only has the instantaneous
memory (Sanchez-Palencia, 1980). The similar result has been obtained for a Maxwell
model (Suquet, 1987). [n the following, the memory effects are discussed in general form.

3.2. MemoryefJi'cls
The integral term in eqn (38) represents the memory effects. It can be easily seen that

the homogenized relaxation modulus depend on the history of the relaxation moduli of the
constituent materials as well as on the current moduli of them. However, the memory
effects do not appear in every situation. If the relaxation modulus, Gijk/(Y, t), is separable
with respect to space and time, the memory effects do not appear. This fact can be shown
as follows. Suppose that G/ik/(Y, t) is separable in Yand t, i.e.

(47)

Then the Laplace transform of G,jklY, t) is given by

(48)

Plugging eqn (48) into eqn (46), the following local problem is obtained.
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From eqn (49), it is evident that Wkl is not a function of s. Then from eqn (45), we obtain

SGtkl(S) = {st(s)FumnCy)[<5mk <5n/- emny(Wk/(Y»]}

= st(s){FumnCy)[<5mk <5n/- emny(Wkl(Y»]}

= st(s)F7ikl'

The inverse Laplace transform of eqn (50) gives

(50)

(51)

From the above result, it can be seen that the memory effects come from the coupling
effects of the spatial and the temporal variations of the viscoelastic modulus. It has been
discussed that the memory effects may be induced during the homogenization process by
oscillations in spatial properties for the partial differential equations in which both space
and time are involved (Tartar, 1990).

Suppose that the relaxation moduli are represented in the Prony series as follows:

n

G(y, t) = Gw(Y) + L Gi(y) e-I!T,.
i=: I

If space variable and time variable are separable, then the following holds:

Gi(y) = IX;Ga:; (y) for some scalars IX;, i = 1, ... ,no

(52)

(53)

For example, for an isotropic material with voids which has a constant Poisson's ratio, the
memory effects do not appear. For a composite material with the viscoelastic matrix and
the elastic fibers, the memory effects appear. However, if the elastic fibers are much stiffer
than the viscoelastic matrix, the memory effects become negligible.

The memory effects make the homogenization problem complicated. When the relax­
ation moduli are separable as can be seen in eqn (51), it is sufficient to solve the local
problem only once. However. it is necessary to solve the local problem for every s if the
relaxation moduli are not separable with respect to space and time variables. Thus, in
practice, the effective relaxation moduli should be curve-fitted after computing them for
several S. This fact brings in a lot of complications as discussed in the following section.

3.3. Inverse Laplace rramform
Since homogenized relaxation moduli are computed in Laplace transformed domain,

inverse Laplace transform is required unless the memory effects do not appear. In the
present work, the least-square fitting in Laplace transformed domain is employed based on
the Prony series representations of the relaxation moduli. Since it is difficult to optimize
the relaxation times of the fitting function because of their nonlinear behavior, the relaxation
times should be properly chosen in the region where the relaxation curve changes rapidly
(Cost and Becker, 1970). The choice of the fitting function, i.e the number of terms and the
values of the relaxation times, is carried out as follows. Firstly, two bounding points
between which the relaxation curve changes rapidly are selected. Secondly, at least one
point per decade is selected as a relaxation time with even spacing in the log scale. Of
course, the number of data points should be more than or equal to the number of fitting
points. In general, because of memory effects, more terms in the Prony series are required
in the fitting function than the number of terms in the Prony series representations of the.
given material. Once the approximations are made in the Laplace transformed domain, the
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c)
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b)

d)

e)
Fig. 3. Finite element meshes of microstructures; (a) vf = 10%; (b) vf = 30%; (c) vf = 40%; (d)

vf= 50%; Ie) vf= 70%

relaxation moduli in time domain and the complex moduli (the storage moduli and the loss
moduli) as well as the loss tangent in frequency domain are readily obtained using the
known relations (Christensen, 1982).

4. NUMERICAL EXAMPLES AND DISCUSSIONS

In the following examples, two-dimensional plane stress state is considered and con­
stituent materials are assumed isotropic. All the microstructures used in the examples have
the same configuration, i.e. a circular inclusion in a square matrix. The size of the inclusion
and the material properties of matrix and inclusion are to be varied. Volume fractions of
the inclusions are 10, 30, 40, 50 and 70%. Finite element meshes for these microstructures
are shown in Fig. 3. It should be mentioned that excessively fine meshes are not required
for the present microstructures due to their simple shapes. We had refined the meshes for
all cases and had examined the differences in the homogenized moduli. Even when the
number of elements were increased about ten times, the differences were in about 2% or
less. The meshes in Fig. 3 are sufficiently tine enough in our case and will be used in the
following examples.
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4.1. Example 1
In order to observe the memory effects, a viscoelastic composite with elastic circular

inclusions in viscoelastic matrix in which the stiffness of the elastic inclusions is comparable
to that of the viscoelastic matrix is treated. The modulus of the elastic inclusions is

E=20, v=0.21. (54)

The modulus of the viscoelastic matrix, which is represented by using the standard linear
solid model (Christensen, 1982), is given by

E(t)=3+17e- l
, v=0.38. (55)

The volume fraction of the inclusions is 40%. Because of the long-term memory effects, the
homogenized relaxation modulus cannot be represented exactly with the standard linear
solid model. It is, therefore. required to introduce additional terms in Prony series approxi­
mation. To see the effect of the number of the terms in Prony series approximation, the
numbers of relaxation terms (Nf ) is varied by 1,3,5 and 7. Figure 4 shows the results. They
show that small errors introduced in fitting the homogenized relaxation modulus in Laplace
transformed domain may cause large errors in the computed complex modulus and the loss
tangent in frequency domain. Therefore, the proper choice of the number of decades and
the values of the relaxation times for fitting the homogenized relaxation modulus becomes
important when the memory effects become apparent. In the present case, it may be
concluded that at least five relaxation times in the interval, where the relaxation curves vary
rapidly, should be used to accurately fit the homogenized relaxation modulus.

Next, the homogenized modulus was computed by varying the volume fractions of the
inclusions from 10 to 70%. Figure 5 shows the results. The amount of changes in the
homogenized relaxation modulus as a function of s or t decreases monotonically as the
volume fraction of the inclusions increase. Also, the loss tangent decreases monotonically
as the volume fraction increases. However, the relaxation modulus itself does not mon­
otonically decrease or increase as a function of the volume fraction since the Poisson's ratio
of the inclusion and that of the matrix are different. The frequency of peak loss tangent
varies according to the volume fraction. It should be noted that higher loss tangent may be
obtained, even when the volume fraction of the inclusion is increased, by changing the
configuration of the microstructure even if the volume fraction of the inclusion is increased.

4.2. Example 2
As a second example, the following viscoelastic material with one additional term in

the Prony series is used as the viscoelastic matrix of the composite.

E(t) = 3+7e ' + JOe- 110
, v = 0.38. (56)

Figures 6 and 7 show the results. They show that the previous discussions apply more
vividly for the present case. Due to the memory effect, the proper choice of the fitting
function is also very important in the estimation of the effective moduli.

4.3. Example 3
Composites with the microstructure composed of two isotropic viscoelastic materials

with different relaxation times are used. The relaxation moduli are given as follows:

E(t) = 3+17e 110. v = 0.38 for material 1

E(t) = 3+ 17 e', v = 0.38 for material 2.

(57)

(58)

The effective moduli of the two composites are estimated. In the first composite, material
I is for the circular inclusion and material 2 for the matrix, and in the second one, the roles
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of material I and 2 are interchanged. The volume fraction of material I and 2 are the same
in both composites, i.e. 50%, respectively. Figure 8 shows the computed results. The loss
tangents and thus the damping effects of the homogenized materials as a function of
frequency may be significantly affected by the configurations of the microstructure as well
as the relaxation moduli of the constituent materials. The loss tangent at a fixed frequency
seems to be bounded by the largest loss tangent of the constituent materials at that
frequency. However, suppose the operating frequency is not fixed at one frequency, but
varied at several frequencies or in some frequency interval. In those cases, even when the
dampings of the constituents themselves are low, it may be possible to fabricate a composite,
with a special microstructural configuration, that has high damping at those frequencies or
in that frequency interval.

5. CONCLUSIONS

A method for estimating the homogenized relaxation moduli of the general linear
viscoelastic composite materials has been presented. The memory effects have been pre­
sented in general form and it has been shown that the memory effects disappear if the
relaxation moduli are separable in space and time. For the typical fiber reinforced
composites, where the elastic fibers are much stiffer than the polymer matrices, the memory
effects become negligible. In the cases where the memory effects do not appear, it is sufficient
to compute the relaxation moduli for only one s in Laplace transformed domain and inverse
Laplace transform is readily obtained since the shape of the graph of the relaxation function
against time is not changed. However, for the composites where the constituent materials
have comparable stiffnesses, the memory effects may become apparent. The memory effects
make numerical inverse Laplace transform very complicated.

The memory effects and inverse Laplace transform have been discussed in detail. Due
to the presence of the memory effects, additional terms are required in the Prony series
approximation of the homogenized relaxation moduli for accurate inverse Laplace trans­
form. It also has been shown that maximum damping can be achieved by choosing a right
configuration of the microstructure.

Designing an optimal microstructure of viscoelastic composites with required damping
capacity or the prescribed effective moduli could be our future work.
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